logo
Documentación
Buscar
Service, Credit & Pricing

Service, Credit & Pricing

Model Services

GPTBots currently offers two different model service modes. Customers can choose between using a "GPTBots key" or their "Own key" based on their needs. Different modes incur different credit charges as service fees when calling model services. You can select and configure your preferred service mode under "Organization - LLMs".

  • GPTBots Key: This is a service directly provided by GPTBots official. Developers can use services from platforms like OpenAI and Claude directly through GPTBots without having to register their own keys on these platforms.
  • Own Key: If developers already have their own keys from platforms like OpenAI, they can use them directly on the GPTBots platform. GPTBots will charge a small amount of credits as service fees.

Service Credit Pricing

All services within GPTBots are priced and usage is tracked using "credits". Different LLM versions consume different amounts of credits. For detailed consumption calculations, please refer to the following sections.

Note: Credits cannot be refunded or exchanged.

Credit Consumption Types

The GPTBots platform differentiates pricing based on service types (see Service, Credit & Pricing for details), with credits deducted according to different service rates. There are 10 specific billing types. When using AI Agents and Workflows, different types of services will consume corresponding credits. Developers can view credit consumption statistics under "Organization - Usage".

Billing Type Definition Example
LLM Text Chat Calling LLM with text and image input/output When LLM components, Classifier, or condition judgment components are invoked
LLM Audio Chat Calling Audio LLM for audio input/output When Audio LLM is invoked
ASR Recognition Using ASR Service to convert audio to text When uploading audio files in system recognition mode
TTS Generation Using TTS Service to convert text to audio When clicking the sound play button for text messages in chat window
Knowledge Indexing Using Knowledge Index to perform embedding on user questions and knowledge data When performing knowledge retrieval
Knowledge Storage Uploading and storing knowledge data in the knowledge base Daily calculation of current knowledge base storage capacity
Tools Invocation Successfully calling Paid Tools When using paid tools like Google search
Knowledge Reranking Using Rerank Service to rerank retrieved knowledge base results When knowledge reranking feature is enabled for knowledge base
Database Processing Converting uploaded documents to database field values and calling Database queries to generate charts When extracting documents to database and using database features in conversations
Question Recognition Using Question Recognition for question classification and sentiment analysis When enabling question classification feature in logs

LLM Service Pricing

Note: The following prices are measured in "credits / 1K Tokens".

Brand
Model
Input (GPTBots Key) Output (GPTBots Key) Input (Own Key) Output (Own Key)
OpenAI GPT-4.1-1M 0.22 0.88 0.02 0.08
OpenAI GPT-4.1-mini-1M 0.044 0.176 0.004 0.016
OpenAI GPT-4.1-nano-1M 0.011 0.044 0.001 0.004
OpenAI GPT-4o-128k 0.225 1.1 0.0225 0.11
OpenAI GPT-4o-mini-128k 0.0165 0.0665 0.0015 0.006
OpenAI GPT-o3 1.1 4.4 0.1 0.4
OpenAI GPT-o4-mini 0.121 0.484 0.011 0.044
OpenAI GPT-4o-Audio-128k 4.4 8.8 0.4 0.8
OpenAI GPT-4o-mini-Auido-128k 1.1 2.2 0.1 0.2
OpenAI GPT-3.5-turbo-16k 0.055 0.165 0.005 0.015
OpenAI GPT-4-8k 3.3 6.6 0.3 0.6
OpenAI GPT-4-turbo-128k 1.1 3.3 0.1 0.3
DeepSeek V3 0.0157 0.0314 0.0014 0.0029
DeepSeek R1 0.0629 0.2514 0.0057 0.0229
Google Gemini-2.5-Flash 0.011 0.066 0.0015 0.006
Google Gemini-2.5-Flash(audio input) 0.11 0.066 0.01 0.006
Google Gemini-2.5-Flash-Thinking 0.011 0.385 0.0015 0.035
Google Gemini-2.5-Pro 0.275 1.65 0.025 0.15
Anthropic Claude-3.5-Haiku-200k 0.028 0.138 0.003 0.003
Anthropic Claude-4.0-Sonnet-200k 0.33 1.65 0.03 0.15
Anthropic Claude-4.0-Sonnet-Thinking-200k 0.33 1.65 0.03 0.15
Anthropic Claude-4.0-Opus-200k 1.65 8.25 0.15 0.75
Anthropic Claude-4.0-Opus-Thinking-200k 1.65 8.25 0.15 0.75
Azure GPT-4o-mini-128k 0.0165 0.0665 0.0015 0.006
Azure GPT-4o-128k 0.225 1.1 0.0225 0.11
Azure GPT-4o-Audio-128k 4.4 8.8 0.4 0.8
Azure GPT-4o-mini-Auido-128k 1.1 2.2 0.1 0.2
Azure GPT-3.5-turbo-4k 0.055 0.165 0.005 0.015
Azure GPT-3.5-turbo-16k 0.055 0.165 0.005 0.015
Azure GPT-4-8k 3.3 6.6 0.3 0.6
Azure GPT-4-32k 6.6 13.2 0.6 1.2
Azure GPT-4-turbo-128k 1.1 3.3 0.1 0.3
Meta llama-3.0-8b-8k 0.022 0.022 0.002 0.002
Meta llama-3.0-70b-8k 0.099 0.099 0.009 0.009
Meta llama-3.1-8b-turbo-128k 0.022 0.022 0.002 0.002
Meta llama-3.1-70b-turbo-128k 0.099 0.099 0.009 0.009
Meta llama-3.1-405b-turbo-4k 0.099 0.099 0.009 0.009
Mixtral open-mistral-7b 0.028 0.028 0.003 0.003
Mixtral open-mixtral-8x7b 0.077 0.077 0.007 0.007
Mixtral mistral-small-latest 0.220 0.660 0.020 0.060
Mixtral mistral-medium-latest 0.297 0.891 0.027 0.081
Mixtral mistral-large-latest 0.880 2.640 0.080 0.240
Tencent Hunyuan-lite- 4k free free free free
Tencent Hunyuan-standard-32k 0.0707 0.0786 0.0064 0.0071
Tencent Hunyuan-standard-256k 0.2357 0.9429 0.0214 0.0857
Tencent Hunyuan-pro-32k 0.472 1.572 0.042 0.142
Ali Qwen-3.0-Plus-128k 0.0126 0.0314 0.0011 0.0029
Ali Qwen-3.0-Plus-Thinking-128k 0.0126 0.2514 0.0011 0.0229
Ali Qwen-3.0-turbo-1M 0.0047 0.0094 0.0004 0.0009
Ali Qwen-2.5-Max-32k 0.3143 0.9429 0.0286 0.0857
Ali Qwen-vl-max-32k 0.3143 0.3143 0.0286 0.0286
Ali Qwen2.5-72b-128k 0.0629 0.1886 0.0057 0.0171
Ali Qwen2.0-32b-128k 0.055 0.11 0.005 0.01
Ali Qwen2.0-7b-128k 0.0314 0.0943 0.0029 0.0086
Ali Qwen2.0-audio 0.1 0.1 0.01 0.01
Baidu ERNIE-4.0-8K 1.76 1.76 0.16 0.16
Baidu ERNIE-3.5-8K 0.18 0.18 0.02 0.02
Baidu ERNIE-Speed-128K free free free free
ZhiPu GLM-4.0-Plus-128K 0.7857 0.7857 0.0714 0.0714
ZhiPu GLM-4.0-9b-8K 0.095 0.095 0.008 0.008
ZhiPu GLM-4V-Plus-8K 0.017 0.017 0.0015 0.0015
ZhiPu GLM-4-FlashX 0.0016 0.0016 0.0001 0.0001
Moonshot Moonshot-128K 0.9429 0.9429 0.0857 0.0857
Moonshot Moonshot-32K 0.3771 0.3771 0.0343 0.0343
Moonshot Moonshot-8K 0.1886 0.1886 0.0171 0.0171
DeepSeek DeepSeek-V3-64K 0.0157 0.0314 0.0014 0.0029
DeepSeek DeepSeek-R1-64K 0.0629 0.2514 0.0057 0.0229

Embedding Service Pricing

Note: The following prices are measured in "credits / 1K Tokens".

Brand
Model
GPTBots Key
Own Key
OpenAI text-embedding-ada-002 0.0120 0.0010
OpenAI text-embedding-3-large 0.0156 0.0013
OpenAI text-embedding-3-small 0.0024 0.0002

Rerank Service Pricing

Note: The following prices are measured in "credits / 1K Tokens".

Brand
Model
GPTBots Key
Own Key
Jina reranker-v1-base-en 0.0022 0.0001
Jina reranker-v1-turbo-en 0.0022 0.0001
Jina reranker-v1-tiny-en 0.0022 0.0001
Baai bce-rerank 0.0022 0.0001
NteEase bgep-rerank 0.0022 0.0001

ASR Service Pricing

Note: The following prices are measured in "credits / 60 secs".

Brand
Model
GPTBots Key
Own Key
OpenAI Whisper Large-V2 0.66 0.06
OpenAI Whisper Large-V3 0.88 0.08

TTS Service Pricing

Note: The following prices are measured in "credits / 1000 chars".

Brand
Model
Platform Key
Own Key
OpenAI TTS 1.65 0.15
Azure Speech 1.65 0.15
Ali CosyVoice 0.44 0.044
Ali Sambert 0.22 0.022
Minimax Voice 0.44 0.044

Vector Storage

Note: The following prices are measured in "credits / 1K Tokens/ day".

Service
Charge
Vector Storage 0.001

FAQ

How to Convert Between GPTBots Credits and Tokens?

Taking OpenAI's LLM service GPT-4.1-1M as an example, when using GPTBots Key, inputting 1000 tokens consumes 0.22 credits.
$10 = 1000 credits = 4,545,454 Tokens (1000 credits / 0.22 credits * 1000 tokens)

Language Input ≈ Characters Input ≈ Words
English 18,000,000 characters 3,500,000
Chinese 3,000,000~4,500,000 -
Japanese 3,000,000~4,500,000 -
Korean 3,000,000~4,500,000 -
French - 3,800,000
German - 3,800,000
Thai 3,000,000~4,500,000 -
Russian - 3,800,000
Arabic - 3,800,000

Note:
These are approximate estimates and actual values may vary depending on text content and tokenization method.
Word counts are easier to estimate for English and other Latin-based languages, while character counts are more relevant for Chinese, Japanese, Korean, Thai, etc.

How Are Tokens Calculated?

Taking OpenAI's LLM service token calculation rules as an example:

Language/Character 1 Token ≈ Characters
English 4 characters
Chinese 1 Chinese character
Japanese 1 kana or kanji
Korean 1 Hangul character
French/Spanish/German etc. 3~4 characters
Russian 3~4 characters
Arabic/Hebrew 3~4 characters
  1. English: 1 English word ≈ 1.3 tokens, 1 token ≈ 4 English characters (including spaces and punctuation)
  2. Chinese: 1 Chinese character ≈ 1 token (sometimes 1.5 tokens, averaged)
  3. Japanese: 1 token ≈ 1 Japanese kana/kanji
  4. Korean: 1 token ≈ 1 Korean letter (syllable blocks may be longer)
  5. French: 1 French word ≈ 1.2 tokens
  6. German: 1 German word ≈ 1.2 tokens
  7. Thai: 1 token ≈ 1 Thai letter (Thai has no spaces, token count may be higher after tokenization)
  8. Russian: 1 Russian word ≈ 1.2 tokens
  9. Arabic: 1 Arabic word ≈ 1.2 tokens

    For specific token counting needs, you can use OpenAI's tiktoken tool for actual testing.

How Are Tokens Calculated for Image Inputs?

Taking OpenAI's LLM service token calculation rules as an example, here's how tokens are calculated for images:

  1. Get the image's length and width in "px", e.g., "1024px * 1024px".
  2. Calculate the image's "Tiles" value by dividing both "width" and "height" by 512, rounding up, and multiplying the results.
  3. Calculate the image's "Tokens" using the formula "85+170*Tiles".
  • Complete calculation formula:

    Tiles=(width÷512)×(height÷512)Tiles = ⌈(width÷512)⌉×⌈(height÷512)⌉
    Tokens=85+170×TilesTokens = 85+170×Tiles
  • Python code example:

import math def calculate_tokens(width, height): tiles = math.ceil(width/512) * math.ceil(height/512) tokens = 85 + 170 * tiles return tokens # Test print(calculate_tokens(2000, 500))
                      
                      import math

def calculate_tokens(width, height):
    tiles = math.ceil(width/512) * math.ceil(height/512)
    tokens = 85 + 170 * tiles
    return tokens

# Test
print(calculate_tokens(2000, 500))

                    
Este bloque de código en la ventana flotante

For example, if the input image dimensions are 2000px * 500px, its Tiles value would be 4*1=4, so the input Tokens for this image would be 85+170*4=765.