logo
Desarrollo
Buscar
Vector Similarity Matching

Retrieve and recall knowledge slices from the Agent/Workflow knowledge base based on the provided query content or keywords. Developers can specify the retrieval scope using group_ids or data_ids, set the top_k parameter, and personalize retrieval through knowledge relevance scoring and reranking for customized Retrieval-Augmented Generation (RAG) capabilities.

Request Method

POST

Endpoint

https://api.gptbots.ai/v1/vector/match

Authentication

For details, refer to the authentication method instructions in the API Overview.

Request

Request Example

curl -X POST https://api.gptbots.ai/v1/vector/match \ -H 'Authorization: Bearer your_apikey' \ -H 'Content-Type: application/json' \ -d '{ "embedding_rate": 0.9 , "prompt": "What APIs does GPTBots offer?", "group_ids": ["1234567890","1230987654"], "data_ids": ["1234567890","1230987654"], "top_k": 10 , "rerank_version": "Jina-reranker-v2-base-multilingual", "doc_correlation": 0.70 }'
                      
                      
curl -X POST https://api.gptbots.ai/v1/vector/match \
  -H 'Authorization: Bearer your_apikey' \
  -H 'Content-Type: application/json' \
  -d '{
        "embedding_rate": 0.9 ,
        "prompt": "What APIs does GPTBots offer?",
        "group_ids": ["1234567890","1230987654"],
        "data_ids":  ["1234567890","1230987654"],
        "top_k": 10 ,
        "rerank_version": "Jina-reranker-v2-base-multilingual",
        "doc_correlation": 0.70
      }'

                    
Este bloque de código en una ventana flotante

Request Headers

Field Type Description
Authorization Bearer ${token} Use Authorization: Bearer ${token} for authentication. Please obtain the token from the API key page.
Content-Type application/json Data type; the value should be application/json.

Request Body

Field Type Required Description
embedding_rate float No Specifies the weight ratio between keyword-based and semantic-based retrieval. Value range: [0,1], default is 1. For example: 0 = keyword-only; 1 = semantic-only; 0.4 = 40% keyword, 60% semantic.
prompt string Yes Keywords or query content used for vector similarity matching with documents in the Agent/Workflow.
group_ids array No Knowledge base IDs for vector retrieval within specified knowledge bases. If one or more knowledge base IDs are provided, retrieval is performed within their union. If null or not provided, defaults to all knowledge bases. If [], no knowledge base is retrieved.
data_ids array No Document IDs for vector retrieval within specified knowledge documents. If one or more document IDs are provided, retrieval is performed within their union. If null or not provided, defaults to all knowledge documents. If [], no knowledge document is retrieved.
top_k int Yes After performing vector similarity matching between keywords and document IDs, returns the top K results. Valid range: [1,50].
rerank_version string No Name of the knowledge reranking model for more precise search. Options include: BGE-Rerank, Jina-reranker-v2-base-multilingual, Jina-colbert-v2, BCE-Rerank.
doc_correlation float No Knowledge relevance score, representing the similarity between the user question and a knowledge chunk. Higher scores indicate greater relevance, but excessively high values may result in no available knowledge chunks. Range: [0.1,0.95].

When both group_ids and data_ids are provided, retrieval is performed within the union of their respective knowledge scopes. If both are null or not provided, all knowledge bases are searched by default. If both are empty arrays ([]), no knowledge is retrieved.

Response

Response Example

{ "total": 2, "list": [ { "content": "Test data", "data_id": "aS1CNvPK4XCckDKQNj7azC9a", "document_name": "demo.md", "score": 0.75 }, { "content": "Test data", "data_id": "aS1CNvPK4XCckDKQNj7azC9a", "document_name": "demo.md", "score": 0.75 } ] }
                      
                      {
  "total": 2,
  "list": [
    {
      "content": "Test data",
      "data_id": "aS1CNvPK4XCckDKQNj7azC9a",
      "document_name": "demo.md",
      "score": 0.75

    },
    {
      "content": "Test data",
      "data_id": "aS1CNvPK4XCckDKQNj7azC9a",
      "document_name": "demo.md",
      "score": 0.75 
    }
  ]
}

                    
Este bloque de código en una ventana flotante

Success Response

Field Type Description
total int Total number of returned chunks.
list JSON Array List of chunks.
content string Chunk content.
data_id string Source document.
score float Similarity score.

Failure Response

Field Type Description
code int Error code.
message string Error details.

Error Codes

Code Message
40000 Parameter error
40127 Developer authentication failed
20059 Agent/Workflow deleted